Synthesis of ionic transition metal complexes and 2D perovskite characterization

<u>Giulia Longo</u>, Michele Sessolo and Henk J. Bolink giulia.longo@uv.es

> Instituto de Ciencia Molecular University of Valencia, Spain.

(ICMŲ̀L)

-Vniver§itatöृ́®València____

- Ionic transition metal complexes evaluation through preparation of light emitting devices
- Design of new hybrid emitting material and its optimization for devices applications

SECONDMENT at OSRAM: Synthesis of iTMC

Synthetic modification of Ir complexes: how they affect the performances

A. M. Bünzli, C. Housecroft, G. Longo, Chem. Sci., 2015, DOI:10.1039/c4sc3942d

Complex	Lum _{max} Cd/m	Efficacy _{max} ^{Cd/A}	T _{on} h	T _{1/2} h
1a	1024	3.5	0.14	2800
1b	676	2.2	0.42	1204
1c	1090	3.5	0.03	437
1d	910	2.9	1.11	260
2a	425	1.4	1.21	260
2b	261	0.7	0.05	>2800
2c	1048	2.9	0.07	282
2d	748	1.8	0.01	147

Ionic transition metal complexes based LECs

■Vniver§itatÿdValència■

K. M. Maness *et al. J. Am. Chem. Soc.* **1996**, *118*, 10609.
A. Wu *et al. J. Am. Chem. Soc.* **1999**, *121*, 4883.
E. S. Handy *et al. J. Am. Chem. Soc.* **1999**, *121*, 3525.
Review: Costa, *et al. Angew. Chem. Int. Ed.* **2012**, *51*, 8178.

Mechanism of work

■Vniver§itatÿīdValència■

a) Electrodynamical model

- Cations form electric double layer: drop of electric potential at the electrodes interfaces.
- Cations are joined in the bulk, and there is emission only in the field free region

b) Electrochemical doping model

The movement of the ions leads to the formation of pand n-doped region; the emission take place in the intrinsic region, where there is a drop in the potential, that favors the light emission.

Both can occur, depending on charge injection : if we have good charge injection the electrochemical model takes place, if the injection is bad the device works under electrodynamic conditions

Material characterization: typical curves and figures of merit

Vniver§itatÿdValència____

Efficacy Emitted light per electric flux (Cd/A)

Luminance Flux of light emitted by the device (cd/m²)

Turn on time:

Time to reach 100 cd/m² Time to reach the maximum luminance

Lifetime

Time to reach half of the maximum luminance

■Vniver§itatÿdValència■

Photoluminescence from hybrid perovskites

Organic-inorganic hybrid materials:

perovskite

11

CH₃NH₃PbI₃-CH₃NH₃PbBr₃

King of the solar cells: up to 19% of efficiency in three years! CH,NH,+ CH₃NH₃PbI₃ CH₃NH₃PbBr₃ CH₃NH₃Pb 3.6 eV 3.7 eV 2.3 eV 1.6 eV Br⁻ 1-539 nm 770 nm 5.4 eV 5.9 eV

G. Longo et al, Efficient photovoltaic and electroluminescent perovskite devices, JACS, submitted K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov and H. J. Bolink, *Sci. Rep.*, 2014, **4**.

Bulk CH₃NH₃PbBr₃

Size effect in CH₃NH₃PbBr₃

■Vniver§itatÿīdValència■

How to improve PLQY?

Perovskite NPs showed very high quantum effieciency

L. C. Schmidt et al, Nontemplate Synthesis of CH₃NH₃PbBr₃ Perovskite Nanoparticles, JACS, **2014**, 136, 850

Add materials that could confine the crystal growth of the perovskite, as nanoparticles, small molecules or polymers

CH₃NH₃PbBr₃ with Al₂O₃ NPs

$CH_3NH_3PbBr_3$ with Al_2O_3 NPs

-Vniver§itatÿ́ d'València____

Low luminescence intensity High leakage current Different results with the same device structure

$CH_3NH_3PbBr_3$ with Al_2O_3 NPs

% wt Alumina	PLQY / % Series 1	PLQY / % Series 2	PLQY / % Series 3
6	0.0		
11	0.0		
15	4.2		
20	4.5		0.2
27	4.9		0.4
38	10.8		0.7
42		16.8	4.4
48	25.5	20.5	19.1
55		15.4	28.7
60	14.4		34.9
68	10.6		24.0
75	9.2	11.1	

NPs: dispersion not stable in time

Filtering: change the concentration

No filtering: possible shorts

Very low reproduibility

CH₃NH₃PbBr₃ with polymers

■Vniver§itatÿdValència■

Possibility to patent, so they will be called polymer 1, 2, 3

• Three main behavior for the tested polymer were found

CH₃NH₃PbBr₃ with polymer 1

- Low photoluminescence
- Almost independent from polymer concentration
- Detrimental effect of thermal annealing
- Low electroluminescence

CH₃NH₃PbBr₃ with polymer 2

- Good photoluminescence
- Strongly dependent from polymer concentration
- Big effect of thermal annealing

500

Wavelenght (nm)

5% polymer 2A (QY: 12.3%)

30% polymer 2A (QY: 2.9%) 40% polymer 2A (QY: 0%)

600

10% polymer 2A (QY: 37.2%) 20% polymer 2A (QY: 6.7%)

400

200

0

Photoluminescence intensity (Counts)

CH₃NH₃PbBr₃ with polymer 3

Vniver§itatÿdValència____

- Very high photoluminescence
- Three behavior with different concentrations
- Good effect of thermal annealing

OLED with perovskite:polymer 3 active layer

Conclusions

Conclusions

_Vniver§itatÿīdValència___

- High influence of size confinement and surface passivation on perovskite photoluminescence
- Higher photoluminescence for polymer 3, possibly due to better nanoparticles passivation than other polymers. To be tested soon by high sensibility EQE measurments.
- Bad oled performances, probably due to the separation between perovskite nanoparticles and insulating character of the polymer

Acknowledgments

Vniver§itatÿīdValència____

- EU Marie Curie LUMINET project
- University of Valencia, ICMol
- My supervisors, Henk Bolink and Michele Sessolo

_Vniver§itatǧ₫València____

Thank you for your attention!